Structured sparse coding via lateral inhibition

Karol Gregor Arthur Szlam Yann LeCun
Janelia Farm, HHMI The City College of New York ~ New York University
19700 Helix Drive Convent Ave and 138th st 715 Broadway, Floor 12
Ashburn, VA, 20147 New York, NY, 10031 New York, NY, 10003

karol . gregor @mai | . com aszl am@ourant.nyu.edu yann@s. nyu. edu

Abstract

This work describes a conceptually simple method for stmect sparse coding
and dictionary design. Supposing a dictionary withatoms, we introduce a
structure as a set of penalties or interactions betweery @ar of atoms. We
describe modifications of standard sparse coding algositteminference in this
setting, and describe experiments showing that theseitlgar are efficient. We
show that interesting dictionaries can be learned for autitons that encode tree
structures or locally connected structures. Finally, wewskthat our framework
allows us to learn the values of the interactions from the,dather than having
them pre-specified.

1 Introduction

Sparse modelind (Olshausen and Field, 1996; Aharon et@06)2is one of the most successful
recent signal processing paradigms. A seNoflata pointsX in the Euclidean spadk? is written
as the approximate product oflax k dictionaryiW andk x N coefficientsZ, where each column
of Z is penalized for having many non-zero entries. In equatiifivee take the approximation to
X in the least squares sense, and the penalty on the coeffic#rik to be the; norm, we wish to
find

argming > [[Wzp, — k][> + Allzi/1- @
k
In (Qlshausen and Field, 1996), this model is introducedassaible explanation of the emergence
of orientation selective cells in the primary visual cortél the matrix representing’ corresponds
to neural connections.

It is sometimes appropriate to enforce more structureZatian just sparsity. For example, we
may wish to enforce a tree structure @n so that certain basis elements can be used by any data
point, but others are specific to a few data points; or moregdly, a graph structure ofi that
specifies which elements can be used with which others. Maffiorms of structured sparsity are
explored inl(Kavukcuoglu et Bl.. 2009; Jenatton é{ al.. 2618 and Xing/201D0; Jacob etkl., 2009;
[Baraniuk et all, 2009). From an engineering perspectivecttred sparse models allow us to access
or enforce information about the dependencies betweennayds, and to control the expressive
power of the model without losing reconstruction accur&egm a biological perspective, structured
sparsity is interesting because structure and sparsitgrasent in neocortical representations. For
example, neurons in the same mini-columns of V1 are receptigimilar orientations and activate
together. Similarly neurons within columns in the infertemporal cortex activate together and
correspond to object parts.

In this paper we introduce a new formulation of structureatsity. Thel; penalty is replaced with a

set of interactions between the coding units correspontdingralayer connections in the neocortex.
For every pair of units there is an interaction weight th&icsfies the cost of simultaneously activat-
ing both units. We will describe several experiments witltiodel. In the first set of experiments

input

Figure 1: Model[(B) in the locally connected setting of suliem[3.3. Code units are placed in two
dimensional grid above the image (here representeddriat-clarity). A given unit connects to a
small neighborhood of an input vi& and to a small neighborhood of code units $iaThe S is
present and positive (inhibitory) if the distan¢®etween units satisfies < d < r, for some radii.

we set the interactions to reflect a prespecified structur@né example we create a locally con-
nected network with inhibitory connections in a ring aro@weéry unit. Trained with natural images,

this leads to dictionaries with Gabor-like edge elements wimilar orientations placed in nearby

locations, leading to the pinwheel patterns analogousdsetfobserved in V1 of higher mammals.
We also place the units on a tree and place inhibitory inteEnas between different branches of the
tree, resulting in edges of similar orientation being pthotethe same branch of the tree, see for
example(Hyvarinen and Hoyer, 2001). In the second set céraxygnts we learn the values of the

lateral connections instead of setting them, in effectiieay the structure. When trained on images
of faces, the system learns to place different facial festat correct locations in the image.

The rest of this paper is organized as follows: in the restisfg¢ection, we will introduce our model,
and describe its relationship between the other struckpatsity mentioned above. In section 2, we
will describe the algorithms we use for optimizing the modghally, in section 3, we will display
the results of experiments showing that the algorithms fi@ent, and that we can effectively learn
dictionaries with a given structure, and even learn thectire.

1.1 Structured sparse models

We start with a model that creates a representdtiaf data pointsX via W by specifying a set of
disallowed index pairs of: U = { (i1, j1), (42, J2), ---, (ixjx) } - meaning that representatiodsare
not allowed if bothZ, # 0 andZ; # 0 for any given pail(s, j) € U. Here we constrai@ > 0. The
inference problem can be formulated as

N
: 2
min ‘E 1 W Z; — X7,
iz

subject to
z27Z%(i,j) =0, i,j € U.
Then the Langrangian of the energy with respect tis
N

MWz - X,|1° + 2] 52, (2

j=1
whereS;; are the dual variables to each of the constraintg,iand aré) in the unconstrained pairs.
A local minimum of the constrained problem is a saddle paint{). At such a pointS;; can be

interpreted as the weight of the inhibitory connection le=nil’; andW; necessary to keep them
from simultaneously activating. This observation will e sstarting point for this paper.

1.2 Lateral inhibition model

In practice, it is useful to soften the constraintslinto a fixed, prespecified penalty, instead of a
maximization overS as would be suggested by the Lagrangian form. This allowsegoomts to

use proscribed activations if they are especially impartanthe reconstruction. To use units with
both positive and negative activations we take absolutgegsnd obtain

. w2 (T ,
iy W25 = Xl 412,71, ©

W] =1 Vj.
where|Z;| denotes the vector obtained from the vecfprby taking absolute values of each com-
ponent, andZ; is thejth column ofZ. S will usually be chosen to be symmetric and hawen the
diagonal. As before, instead of taking absolute values,aveinstead constraid > 0 allowing to
write the penalty asZTSZ Finally, note that we can also allog/ to be negative, implementing
excitatory mteractlon between neurons. One then has t@ptéhe sparsity term to go to minus in-
finity by limiting the amount of excitation a given elemenhaxperience (see the algorithm section
for details).

The Lagrangian optimization tries to increase the inhibitbetween a forbidden pair whenever
it activates. If our goal is to learn the interactions, rattien enforce the ones we have chosen,
then it makes sense to do the opposite, and decrease effitSesooresponding to pairs which are
often activated simultaneously. To force a nontrivial §oluand encouragé to economize a fixed
amount of inhibitory power, we also propose the model

mgnrvr&§22||WZj—Xj||2+|Zj‘TS|Zj|> (4)
j

Z =0, [[W;|| =1V,
0<S<B, S=8" andS;|; = a Vj
Here,« and 5 control the total inhibitory power of the activation of amat in 1/, and how much

the inhibitory power can be concentrated in a few interactih.e. the sparsity of the interactions).
As above, usually one would also fito be0 on the diagonal.

1.3 Lateral inhibition and weighted [,

Suppose we have fixesdandW, and are inferring from a datapoint:. Furthermore, suppose that
a subseftl of the indices of: do not inhibit each other. Then if is the complement of, for any
fixed value ofz;. (here the subscript refers to indices of the column vegfpthe cost of using;
is given by
Wrzr — |+ Ailail,
il

where); = > Sijlzj|. Thus forz;. fixed, we get a weighted lasso if.

jele
1.4 Relation with previous work

As mentioned above, there is a growing literature on strectulictionary learning and structured
sparse coding. The works in_(Baraniuk etlal., 2009; Huang.€2@09) use a greedy approach for
structured sparse coding based on OMP or CoSaMP. These dsedh® fast when there is an ef-
ficient method for searching the allowable additions to ttteva set of coefficients at each greedy
update, for example if the coefficients are constraineddomh a tree. These works also have
provable recovery properties when the true coefficientgaetsthe structure, and when the dictio-
naries satisify certain incoherence properites. A secamilar basic framework is group sparsity
(Kavukcuoglu et al!, 2009; Jenatton et al., 2010; Kim andgX{2010; Jacob et & 09). In these
works the coefficients are arranged into a predeterminedfggbups, and the sparsity term penal-
izes the number of active groups, rather than the numbertveaglements. This approach has the
advantage that the resulting inference problems are coavekmany of the works can guarantee
convergence of their inference schemes to the minimal gnerg

In our framework, the interactions i$ican take any values, giving a different kind of flexibilityl-A
though our framework does not have a convex inference, turitims we propose experimentally
efficiently find good codes for every we have tried. Also note that in this setting, recovery theo-
rems with incoherence assumptions are not applicableusecae will learn the dictionaries, and

so there is no guarantee that the dictionaries will satiséhsonditions. Finally, a major difference
between the methods presented here and those in the otHex iwtiat we can learn thefrom the
data simultaneously with dictionary; as far as we know, igisot possible via the above mentioned
works.

The interaction between a set of units of the forfRz + 7~ was originally used in Hopfield
nets (Hopfield, 1982); there theare binary vectors and the inference is deterministic. ZBun
machines/(Ackley et al., 1985) have a similar term, butttand the inference are stochastic, e.g.
Markov chain Monte carlo. Wittt fixed, one can consider our work a special case of real valued
Hopfield nets with? = W7 + S andd = W7 z; because of the form ak andd, fast inference
schemes from sparse coding can be used. When we fgahe constraints o serve the same
purpose as the contrastive terms in the updates in a Boltema@hine.

In (Garrigues and Olshausen, 2008) lateral connections medeled as the connections of an Ising
model with the Ising units deciding which real valued unfterfi which input was reconstructed)
were on. The system learned to typically connect similaerdgtions at a given location. Our
model is related but different - it has no second layer, therdh connections control real instead
of binary values and the inference and learning is simptethe cost of a true generative model.
In (Druckmann and Chklovskii, 2010) the lateral connecigrere trained so that solutionsto a
related ODE starting from the inferred code0f z, of an inputz would map vial¥ to points
close tox. In that work, the lateral connections were trained in respao the dictionary, rather
than simultaneously with it, and did not participate in nefece.

In (Garrigues and Olshausen, 2010) the coefficients weengdy a Laplacian scale mixture prior,
leading to multiplicative modulation, as in this work. Howee, in contrast, in our case the sparsity
coefficients are modulated by the units in the same layerywaniarn the modulation, as opposed

to the fixed topology in(Garrigues and Olshalisen, 2010).

2 Algorithms

In this section we will describe several algorithms to sdive problems in[{3) andi(4). The basic
framework will be to alternate betweens updatesztolV, and, if desired,S. First we discuss
methods for solving foZ with " and.S fixed.

21 Inferring Z from W, X, and S.

The Z update is the most time sensitive, in the sense that the vénables are fixed after train-
ing, and onlyZ is inferred at test time. In general, any iterative algantthat can be used for
the weighted basis pursuit problem can be adapted to oumgsetihe weights just change at each
iteration. We will describe versions of FISTA (Beck and Tel, [2009) and coordinate descent
(Wu and Langde, 2008; Li and Osher, 2009). While we cannot piloaethe algorithms converge to

the minimum, in all the applications we have tried, they perf very well.

211 AFISTA likealgorithm

The ISTA (Iterated Shrinkage Thresholding Algorithm) miizes the energyfW z — z||? + A|z|1
by following gradient steps in the first term with a “shrinkdpthis can be thought of as gradient
steps where any coordinate which crosses zero is threghdlidequations:

1
A= sh(A/L)(Z - ZWT(Wzt —x)),

wheresh, (b) = sign(b) - ha(]b]), andh,(b) = max(b — a,0). In the case where is constrained
to be nonnegativesh reduces ta. In this paper) is a vector depending on the current value: pf
rather than a fixed scalar. After each updatés updated by = A1« Szi+1,

Nesterov’s accelerated gradient descent has been found &ffdctive in the basis pursuit set-
ting, where it is called FISTAL(Beck and Teboulle, 2009). bsence one adds to theupdate
a momentum that approaches one with appropriate speed.fi€pgcthe update equation on

Algorithm 11STA Algorithm 2 Coordinate Descent

function ISTA (X, Z, W, L) function CoD(X, Z, W, S, S)
Requires L > largest eigenvalue of Require: S =1—-WIWw,
WTw. Initializee Z=0;B=WTX;A=0
Initialize: Z = 0, repeat
repeat Z = hx(B)
A= 5|z k = argmax|Z — Z|
Z = shoyyy(Z =t WT(WZ - X)) B =B+ 852, — Zy)
until change inZ below a threshold A=A+ Sx(Z — Zi)
end function 7y = I,
until change inZ is below a threshold
Z = ha(B)
end function
becomes="*! = y' +ri(y" —y'""), y' = shoyr)(Z - gWT(We' — @), m = = and

Ut+1
urr1 = (1 4+ 1+ 4u?)/2, uy = 1. Although our problem is not convex and we do not have any of
the normal guarantees, empirically, the Nesterov acd@araorks extremely well.

2.1.2 Coordinate descent

The coordinate descent algorithm iteratively selects glsinoordinate of z, and fixing the other
coordinates, does a line search to find the value(&f with the lowest energy. The coordinate
selection can be done by picking the entry with the largeatignt Wu and Lange (2008), or by
approximating the value of the energy after the line seai@nt Osher((2009). Suppose at titie
step we have chosen to update kltie coordinate of?. Becauseés is zero on its main diagonal, the
penalty term is not quadratic it*!(k), but is simply a\(k)z!*!(k), whereX = Sz; (which only
depends on the currently fixed coordinates). Thus there explicit solutionz!*! = h,(B(k)),
whereB is W1 (Wzt — x). Just like in the setting of basis pursuit this has the nicperty that
by updatingB and), and using a precomputéd” 17/, each update only requiréy K') operations,
whereK is the number of atoms in the dictionary; and in particular dictionary only needs to be
multiplied by z once. In fact, when the actual solution is very sparse anditt®nary is large, the
cost of all the iterations is often less than the cost of mlylthg W7 .

We will use coordinate descent for a bilinear model belovthia case, we alternate updates of the
left coefficients with updates of the right coefficients.

2.2 Updating W and S

The updates td) andS can be made after each nevis coded, or can be made in batches, say after
a pass through the data. In the case of per datapoint updaesn proceed via a gradient descent:
the derivative of all of our models with respectio for a fixedz andz is (Wz — x)z”". The batch
updates td¥ can be done as i-SVD (Aharon et al, 2006).

It is easier to updaté in (@) in batch mode, because of the constraints. Witrand Z fixed, the
constrained minimization aof is a linear program. We have found that it is useful to avethge
currentS with the minimum of the linear program in the update.

3 Experiments

In this section we test the modell§[([3,4) in various experialesettings.

3.1 Inference

First we test the speed of convergence and the quality ofebglting state of ISTA, FISTA and
coordinate descent algorithms. We use the example of sé€#bwhere the input consist of image
patches and the connectionsSrdefine a tree. The figufe 3.1 shows the energy after eachidgterat

(X —WZ|]? +|Z7|S|Z] 271812

n |[FISTA[ISTA| CoD | FISTA | ISTA | CoD
8 || 2167 | 21.67| 2179 || 1e9] 0L | O
4

i 4 | 2144 |2143| 2179 | 05 | 08 | .03
. 02 | 2112 | 2112| 2168 | 28 | 32 | =21
. 01 | 2063|2067 2119 | 87 | 94 | 78

0.05| 19.64 | 19.67| 19.94 201 | 207 | 2.0

P T

0 10 120 140 160 180 200

Figure 2: On the left: The energy values after each iterasfdhe 3 methods, averaged over all the
data points. On the right: values of the average enéfdy, [|W Z; — X;|*> + 1| Z;|" S| Z;| and

average S sparsity- > |Z;|TS|Z;|. The “oracle” best tree structured output computed by using

an exhaustive search over the projections of each data poiateach branch of the tree has the
average energ¥0.58 and sparsity). S, W, andX are as in section 3.4

of the three methods average over all data points. We carnatedordinate descent very quickly
moves to its resting state (note that each iteration is mbeapger as well, only requiring a few
column operations), but does not on average tend to be qgige@d a code as ISTA or FISTA. We
also see that FISTA gets as good a code as ISTA but after farfigsvations.

To test the absolute quality of the methods, we also meagaiest the “oracle” - the lowest possible
energy when none of the constraints are broken, that is, Wh8fx| = 0. This energy is obtained
by exhaustive search over the projections of each data paieteach branch of the tree. In the
table in Figuré_3]1, we give the values for the average engrgy . [|W Z; — X, +n|Z;|" S| Z;|
and for the sparsity energg >-;1lZ;|"S|Z;] for various values of). Notice that for low values
of n, the methods presented here give codes with better enezgytlie best possible code on the

tree, because the penalty is small enough to allow devisfiam the tree structure; but when the
parameter is increased, the algorithms still compare vgalirest the exhaustive search.

3.2 Scaling

An interesting property of the model(Sl(B,4) is their scaliifghe input is re-scaled by a constant
factor the optimal code is re-scaled by the same factor. Teisnodel preserves the scale infor-
mation and the input doesn’t need to be normalized. This igh@case in the standaid sparse
coding model[(lL). For example if the input becomes small fiteval code is zero.

In this subsection we train the modEl (3) on image patcheshdrfirst part of the experiment we
preprocess each image patch by subtracting its mean angeseleiments of to be all equal and
positive except for zeros on the diagonal. In the secondgddhte experiment we use the original
image patches without any preprocessing. However sincenétam is the strongest component we
introduce the first example of structure: We select one oftlmeponents of and disconnect it from

all the other components. The resultiSgs equal to a positive constant everywhere except on the
diagonal, the first row, and the first column, where it is zéfter training in this setting we obtain
the usual edge detectors (see Figlite (3a)) except for thedinsponent which learns the mean. In
the first setting the result is simply a set of edge detectexperimentally, explicitly removing the
mean before training is better as the training convergesradoe quickly.

3.3 Locally connected net

In this section we impose a structure motivated by the cainrgoof cortical layer V1. The cortical
layer has a two dimensional structure (with depth) with tmre corresponding to the locations in
the input image. The sublayer 4 contains simple cells witlpediike receptive fields. Each such
cell receives input from a small neighborhood of the inpuag® at its corresponding location. We
model this by placing units in a two dimensional grid aboweithage and connecting each unit to
a small neighborhood of the input, Figlfe 1. We also bind ections weights for units that are
far enough from each other to reduce the number of parameiigrsut affecting the local structure
(Gregor and LeCuin, 2010). Next we connect each unit by itdripinteractions (theS matrix) to

units in its ring-shaped neighborhood: there is a connediretween two units if their distancé

Figure 3: (a) Filters learned on the original unprocessealyenpatches. Th& matrix was fully
connected except the unit corresponding to the upper leftecavhich was not connected to any
other unit and learned the mean. The other units typicadlynied edge detectors. (b) Filters learned
in the tree structure. Ths;; = 0 if one of thei and; is descendant of the other afigy = S%d(i, 5)
otherwise wheré(s, j) is the distance between the units in the tree. The filters imendpranch are
of a similar orientation and get refined as we walk down the.tre

----Il Iil 1=k
w

EEEE .\-.\\---
e o = B e

Figure 4: (a-b) Filters learned on images in the locally emed framework with local inhibition
shown in the FigurEl1. The local inhibition matrix has pesitvalueS;; = S° > 0 if the distance
between code unitg; and Z; satisfiesr; < d(i,5) < r2 andS;; = 0 otherwise. The input size
was40 x 40 pixels and the receptive field size wHsx 10 pixels. The net learned to place filters of
similar orientations close together. (a) Images were pegssed by subtracting the local mean and
dividing by the standard deviation, each of widtlé5 pixels. The resulting filters are sharp edge
detectors and can therefore be naturally imbedded in twewsions. (b) Only the local mean, of
width 5 pixels, was subtracted. This results in a larger range ofueacies that is harder to imbed
in two dimensions. (c-d) Filters trained df x 10 image patches with mean subtracted and then
normalized. (c) The inhibition matrix was the same as in)@d) This time there was an penalty

on each code unit and the lateral interaction masriwas excitatory:S;; < 0if d(i,j) < ro and
zero otherwise.

satisfies; < d < ro for some radiir; andr, (alternatively we can put; = 0 and create excitatory
interactions in a smaller neighborhood). With this arranget units that turn on simultaneously are
typically either close to each other (within) or far from each other (more distant thay).

Training on image patches results in the filters shown in figare figure2. We see that filters
with similar orientations are placed together as is obgkiné/1 (and other experiments on group

sparsity, for example (Hyvarinen and Hdyer, 2001)). Hereol&in these patterns by the presence
of inhibitory connections.

3.4 Treestructure

In this experiment we place the unitson a tree and desire that the units that are on for a given
input lie on a single branch of the tree. We deflfj¢ = 0 if 7 is descendant of or vice versa and

Si; = SYd(i, j) otherwise wher&® > 0 is a constant and(i, j) is the distance between the nodes
1 andj (the number of links it takes to get from one to the other).

We trained[(B) on image patches. The model learns to placérémuency filters close to the root
of the tree and as we go down the branches the filters “refire parents, Figurel 3b.

H 5
E B B
=l =4
H E E

Figure 5: On the left: the dictionary a6 x 16 filters learned by the convolutional model on faces.
On the right: some low energy configurations, generatedaimhdas in Sectiof 315 . Each active
filter has response 1.

3.5 A convolutional image parts model

We give an example of learning§ in a convolutional setting. We use the centered faces fram th
faces in the wild dataset, availablettt p: / / vi s- ww. ¢S. unass. edu/ | f w | From each of
the 13233 images we subsample by a factor of two and pick aradd x 48 patch. Thel8 x 48
imagex is then contrast normalized to— b x x, whereb is a5 x 5 averaging box filter; the images
are collected into thé8 x 48 x 13233 data setX.

We then train a model minimizing the energy

20
Z I Z W; * 25 — Xi||? + p(2)" Sp(2),

i j=1
B>8>0,8=8T S =a

Here the code vector is written as al8 x 48 x 20 feature map. The pooling operatotakes the
average of the absolute value of eachk 8 patch on each of th20 maps, and outputs a vector of
size6 - 6 - 20 = 720. g is setto 72, and to .105. Note that these two numbers roughly specify the
number of zeros in the solution of titeproblem to bel 600.

The energy is minimized via the batch procedure. The updetesare done via coordinate descent
(coordinate descent in the convolutional setting workstyas before), the updates fdr via least
squares, and at each updateis averaged with .05 of the solution to the linear prograny iwith
fixed Z andW. W is initialized via random patches frod, and.S is initialized as the all ones
matrix, with zeros on the diagonal. In Figlide 5 the dictignér is displayed.

To visualize theS which is learned, we will try to use it to generate new imagd¥ghout any data

to reconstruct the model will collapse to zero, so we willstoainz to have a fixed number of unit
entries, and run a few steps of a greedy search to decide whicies should be on. That is: we
initialize = to have 5 random entries set to one, and the rest zero. At égghvee pick one of the
nonzero entries, set it to zero, and find the new entry which is cheapest to set to one, namely,
the minimum of the entries i¥p(z) which are not currently turned on. We repeat this until the
configuration is stable. Some results are displayédl in 5.

The interesting thing about this experiment is the fact timfilter ever is allowed to see global
information, except througH. However, even though is blind to anything larger than & x 16
patch, through the inhibition of, the model is able to learn the placement of facial strustarel
long edges.

http://vis-www.cs.umass.edu/lfw/

References

Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learniaigorithm for boltzmann machines*.
Cognitive science, 9(1):147-169.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: Amatithm for designing overcomplete
dictionaries for sparse representatiofEEE Transactions on Sgnal Processing, 54(11):4311—
4322.

Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C. 200Model-Based Compressive
Sensing.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkageesholding algorithm with application
to wavelet-based image deblurringCASSP’ 09, pages 693—-696.

Druckmann, S. and Chklovskii, D. (2010). Over-complete@spntations on recurrent neural net-
works can support persistent percepts.

Garrigues, P. and Olshausen, B. (2008). Learning horizontaections in a sparse coding model
of natural imagesAdvances in Neural Information Processing Systems, 20:505-512.

Garrigues, P. and Olshausen, B. (2010). Group sparse cudiing laplacian scale mixture prior.
In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemg., and Culotta, A., editorgdvances
in Neural Information Processing Systems 23, pages 676—684.

Gregor, K. and LeCun, Y. (2010). Emergence of Complex-Lik#<In a Temporal Product Network
with Local Receptive FieldsArxiv preprint ar Xiv: 1006.0448.

Hopfield, J. (1982). Neural networks and physical systentls @inergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79(8):2554.

Huang, J., Zhang, T., and Metaxas, D. N. (2009). Learningy wituctured sparsity. [hCML,
page 53.

Hyvarinen, A. and Hoyer, P. (2001). A two-layer sparse cgditodel learns simple and complex
cell receptive fields and topography from natural imagéson Research, 41(18):2413-2423.

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Groupdasih overlap and graph lasso. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pages
433-440, New York, NY, USA. ACM.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (20P@)ximal methods for sparse hierarchi-
cal dictionary learning. Imnternational Conference on Machine Learning (ICML).

Kavukcuoglu, K., Ranzato, M., Fergus, R., and LeCun, Y. @00Learning invariant features
through topographic filter maps. IRroc. International Conference on Computer Vision and
Pattern Recognition (CVPR' 09). IEEE.

Kim, S. and Xing, E. P. (2010). Tree-guided group lasso foltirtask regression with structured
sparsity. INICML, pages 543-550.

Li, Y. and Osher, S. (2009). Coordinate descent optimipafito |1 minimization with application
to compressed sensing; a greedy algorithmaerse Problems and Imaging, 3(3):487-503.

Olshausen, B. and Field, D. (1996). Emergence of simplereetptive field properties by learning
a sparse code for natural imagé&ture, 381(6583):607—609.

Wu, T. T. and Lange, K. (2008). Coordinate descent algosttion lasso penalized regression.
ANNALS OF APPLIED STATISTICS, 2:224.

	Introduction
	Structured sparse models
	Lateral inhibition model
	Lateral inhibition and weighted l1
	Relation with previous work

	Algorithms
	Inferring Z from W, X, and S.
	A FISTA like algorithm
	Coordinate descent

	Updating W and S

	Experiments
	Inference
	Scaling
	Locally connected net
	Tree structure
	A convolutional image parts model

